Lecture 3

Compound Propositions, Logical Equivalence

Biconditional Statements

Definition: Let p and q be propositions. The **biconditional statement**, denoted by $p \leftrightarrow q$, is the statement "p if and only if q".

 $p \leftrightarrow q$ is meant to be "If p, then q and if q, then p".

 $p \leftrightarrow q$ is true when both p and q have the same truth value and is false otherwise.

Truth Table of biconditional statement (↔)

р	q	$p \rightarrow q$	$q \rightarrow$
F	F	T	T
F	T	T	F
T	F	F	T
T	T	T	T

Biconditional Statements

Example:

- p = Sam can take the flight.
- q = Sam buys a ticket.
- $p \leftrightarrow q = \text{Sam can take the flight if and only if Sam buys a ticket}$

Some more ways to express $p \leftrightarrow q$.

- ▶ p is necessary and sufficient for q. (: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p))$
- p iff q.

Constructing "Bigger" Compound Propositions

Repeatedly apply logical operator $\neg, \land, \lor, \rightarrow, \leftrightarrow$ on propositions to create bigger propositions.

Truth table of $(p \lor \neg q) \rightarrow (p \land q)$

р	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$(p \lor \neg q) \to (p \land q)$
F	F	T	T	F	F
F	T	F	F	F	T
T	F	T	T	F	F
T	T	F	T	T	T

Precedence of Logical Operators

Tip: Using parentheses with every application of logical operator specifies the order in which logical operators in a compound proposition are to applied.

When parentheses are not present, then the order in which logical operator are applied can be determined from the following order of precedence:

Precedence of Logical Operators

Order of precedence:

Example:

 $p \lor q \land r$ is $p \lor (q \land r)$ not $(p \lor q) \land r$. $p \lor q \to r$ is $(p \lor q) \to r$ not $p \lor (q \to r)$.

- $\neg \land \lor \rightarrow \leftrightarrow$ $1 \quad 2 \quad 3 \quad 4 \quad 5$

- $p \lor \neg q \to p \land q$ is $(p \lor (\neg q)) \to (p \land q)$ not $p \lor (((\neg q) \to p) \land q)$.

Tautology and Contradiction

variables and logical operators such as $(p \lor q) \rightarrow \neg r$, $\neg p \rightarrow (q \land r)$, etc.

Some special compound propositions.

- A compound proposition that is always true irrespective of the truth values of the propositional variables is called a **tautology**, such as $p \vee \neg p$.
- A compound proposition that is always false irrespective of the truth values of the propositional variables is called a **contradiction**, such as $p \wedge \neg p$.
- A compound proposition that is neither a tautology nor a contradiction is called a **contingency**, such as $p \land q$.

Will use the term "compound proposition" for expressions formed from propositional

Logical Equivalence

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

Definition: Compound propositions p and q containing same set of propositional variables are **logically equivalent**, denoted by $p \equiv q$, if $p \leftrightarrow q$ is a tautology.

Example: Show that $\neg p \lor q \equiv p \rightarrow q$

р	q	$\neg p$	$\neg p \lor c$
F	F	T	T
F	T	T	T
T	F	F	F
T	T	F	T

Logical Equivalence

Example: Show that $\neg(p \lor q) \equiv \neg p \land \neg q$

р	<i>q</i>	$\neg p$	$\neg q$	$p \lor q$	$\neg(p \lor q)$	$\neg p \land \neg q$
F	F	T	T	F	T	T
F	T	T	F	T	F	F
T	F	F	T	T	F	F
T	T	F	F	T	F	F

DeMorgan's Law: 1. $\neg (p \lor q) \equiv \neg p \land \neg q$ 2. $\neg (p \land q) \equiv \neg p \lor \neg q$

Important Logical Equivalences

Note: *p*, *q*, *r*, etc. can be compound propositions. For instance, $\neg((p \land q) \lor (s \rightarrow t)) \equiv \neg(p \land q) \land \neg(s \rightarrow t)$

- **De Morgan's Laws:** $\begin{array}{c} \neg (p \lor q) \equiv \neg p \land \neg q \\ \neg (p \land q) \equiv \neg p \lor \neg q \end{array}$
- **Double Negation Law:** $\neg(\neg p) \equiv p$
- **Commutative Laws:** $p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$

Important Logical Equivalences

Absorption Law: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Negation Laws: $p \land \neg p \equiv F'$ $p \lor \neg p \equiv T$

Associative Laws: $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$

Distributive Laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$